Proceedings of the International Conference , “Computational Systems and Communication Technology”

5TH MAY 2010 - by Einstein College of Engineering,

Tirunelveli-Tamil Nadu,PIN-627 012,INDIA

Framework for Adaptive Composition of Web Services with Dedicated Registries
M.S.Thilagavathy#1, R.SivaRaman*2
1 Department of Computer Science and Engineering, Anna University Tiruchirappalli
Tiruchirappalli ,Tamil Nadu, India, 2Lecturer, Anna University , Tiruchirappalli
1thilaga_giri7378@yahoo.co.in
 2rsiva.raman@yahoo.com
Abstract— Web service composition allows developers to create applications on top of service oriented computing’s native paradigm of description, discovery, and communication capabilities. Such applications are rapidly deployable and offer developers reuse possibilities and provide users a seamless access to a variety of complex services. This paper describes the design of a framework for adaptive composition of web services. In the composition model service context and exceptions are configured to accommodate needs of different users. Services selection is made dynamically identifying the best set of services available at runtime. This allows for reusability of a service in different contexts and achieves a level of adaptiveness and contextualization without recoding and recompiling of the overall composed services. The execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules. The single centralized repository is being substituted by dedicated repositories that cooperate and exchange information about stored services on demand. Aspect oriented approach is used to provide support for service adaptation. Three core services, coordination service, context service, and event service, are implemented to automatically schedule and execute the component services, and adapt to user configured exceptions and contexts at run time. The various parts of the framework are explained with a common case study taken from E-learning domain.
Keywords— Web service, service composition, service-oriented architecture, exception handling, aspect-oriented programming, event-based service execution.
I. Introduction

In service-oriented computing (SOC), developers use services as fundamental elements in their application development processes. Services are platform and network independent operations that clients or other services invoke [1]. Web services are typical example of SOC. Definition published by the World Wide Web consortium W3C, in the web services Architecture document states that a web service is a software system identified by a URL, whose public interfaces and bindings are defined and described using XML. Its definition can be discovered by other software systems. These systems may then interact with the web service in a manner prescribed by its definition, using XML-based messages given by internet protocols.

Nowadays, an increasing amount of companies and organizations only implement their core business and outsource other application services over Internet. Service composition is a process of combining existing services in order to satisfy the functionality required by the user. Service composition accelerates rapid application development, service reuse, and complex service consummation. Every composition approach must guarantee connectivity, non-functional QoS properties, such as timeliness, security, and dependability, correctness and scalability. To make service composition dynamic selection of Web services composition focus on context aware business processes.
A current trend is to provide adaptive service composition and provisioning solutions that offer better quality of composite Web services[2],[3]. The pervasiveness of the Internet and the proliferation of interconnected computing devices (e.g., laptops, PDAs, 3G mobile phones) offer the technical possibilities to interact with services anytime and anywhere. Service adaptation refers to the problem of modifying a service so that it can correctly interact with another service, overcoming functional and non-functional mismatches and incompatibilities. While the service functionality remains to a large extent the same, a service needs to adapt to existing one. To simplify adaptation, it is important to separate the adaptation logic from the business logic. Such separation helps to avoid the need of developing and maintaining several versions of a service implementation and isolates the adaptation logic in a single place [4].

 Adaptive Composition of web services with Distributed Registries provides a system infrastructure for distributed, adaptive, context-aware provisioning of composite Web services. This allows service designers to focus more on specifying service composition requirements at a high level of abstraction such as business logic of applications, generic exception handling policies, and contextual constraints, rather than on low-level deployment and coordination concerns [5]. The salient features of our approach are:

Adaptable service composition model decouples the contextual and exceptions specification from the business logic of the actual service. The concept of process schema is used for modeling the business logic of the composite service. End users can then customize this process schema by assigning users’ contextual constraints to the process schema. Generic exception behaviours (e.g., service failures, network errors) that may happen during the service provisioning are specified as policies that can be reused across different process schemas. By adopting AOP approach for modeling exceptions, end users can dynamically add, remove, and modify tuples of aspects on how exceptions can be handled without changing functionalities of composite service.
DIstributed REgistry (DIRE), which is devoted to service publication and exploits a publish/subscribe middleware to support the dynamic federation of heterogeneous registries and the flexible distribution of service descriptions based on explicit subscriptions.

An event-driven service execution model provides the execution semantics of adaptive composite services. We propose the use of an aspect-oriented programming (AOP) approach to weave adaptation solutions into the different composite services that need to be modified. The execution semantics is enforced by means of three core generic services: coordination service, context service, and event service. These basic infrastructure form the backbone of a middleware that provides deployment and automatic execution of the adaptive composite service in a robust and scalable manner.
II. RELATED WORK
Recently, automatic service composition approaches typically exploit the Semantic Web and artificial intelligence (AI) planning techniques. By giving a set of component services and a specified requirement (e.g., user’s request), a composite service specification can be generated automatically [4]. However, realizing a fully automatic service composition is still very difficult and presents several open issues [1], [6], [8]. The basic weakness of most research efforts proposed so far is that Web services do not share a full understanding of their semantics, which largely affects the automatic selection of services. The work in [11] proposes a trade-off between planning and optimization approaches. In a first semiautomatic logical composition step, the goal is translated into a workflow-based specification that introduces abstract tasks. A second physical composition step maps abstract tasks to concrete services and is supervisioned by the composed service designer.

Composite services orchestration is a very active area of research and development. Our work’s distributed orchestration model has some similarities with the work presented in [7], which proposes a decentralized orchestration approach. The approach, however, differs from our work, in that it is only applicable when the assignment of activities to their executing entities is known during the deployment of the workflow, which is a restrictive assumption In the context of service composition where providers can leave and join a community or alter the characteristics of their offers (e.g., the QoS or the price) after the composite service has been defined and deployed. Several techniques have been proposed to deal with adaptability of composite Web services. In the effort reported in [10], a platform has been developed where BPEL processes can be extended with policies and constraints for runtime configuration. The other two recent efforts for adaptive Web services composition, reported in [2], focus on dynamic service selection for context-aware business processes.
III. ADAPTABLE COMPOSITION MODEL
The service composition encompasses roles and functionality for aggregating multiple services into a single composite service. Resulting composite services can be used as basic services in further service compositions or offered as complete applications and solutions to service clients. The basic weakness of most of the service composition models proposed so far is that Web Services do not share a full understanding of their behaviour. Though some approaches to Web Service description consider behaviour, but it is not publicly available. Therefore, it is not exploited in composition, discovery, etc. All traditional service composition model depends on process modeling notations to choreograph the component services. This mode of composition should know the context that the service will be executed before composing the component services. For adaptive service composition, Web service invocation is based on the dynamic selection of concrete services at runtime. The user or front-end application which invokes a Web service may specify only its abstract interface requirements and quality of service constraints. The environments that users interact with are dynamic by nature. Therefore it is not possible to enumerate all the possible contexts and exceptions at service design time.

A. Process Specification

A composed service is specified at an abstract level as a high-level business process. We assume that a composed service is characterized by a single initial task and a single end task. The operational language for process implementation is BPEL . A set of semantic annotations are associated to the process specification to specify requirements by the user of the composed service. Some annotations specified are

· Global and local constraints on quality dimensions.

· Web service dependency constraints.
A process schema is a reusable and extensible business process template devised to reach a particular goal . A process schema can be configured by assigning a number of user contexts to the process schema’s tasks and the schema itself. Individual users can customize process schemas to meet their particular requirements by assigning contexts to schema as parameters. A process schema can also be configured to handle particular type of exceptions. Exception handling Policies are assigned to the process schema and its tasks by the relation policy Assignment. These policies prescribe the knowledge on the appropriate response to a particular exception.
A statechart is made up of states and transitions. States can be initial, end, basic, or compound. A basic state corresponds to an invocation of a service operation, whether an atomic service, a composite service, or a community. The concept of Web service community [6] is proposed to handle the large number and dynamic nature of Web services in a flexible way.
The statechart of a simplified process schema of the E-learning class assistant is given in section VII. E-learning class assistant helps students to manage their class activities.
B. Configuration of composite service
Process schemas that correspond to recurrent user needs (e.g., booking rooms, travel planning) are defined by service designers based on common usage patterns, and are stored in schema repositories. The configuration is done by specifying a number of user contexts and exception handling policies and assigning them to the process. Two abstractions for modeling user contexts are execution contexts and data supply and delivery contexts.
1) Execution Context: An execution context specifies that certain conditions must be met in order to perform a particular operation. Two constraints considered in our service composition model are temporal and spatial constraints. These constraints specify the time and location in which the task has to be executed. Temporal and spatial constraints can be empty, meaning that the corresponding task can be executed anytime and anywhere.
2) Data Supply and delivery Context: The value of a task’s input parameter may be: 1) requested from user during task execution. 2) obtained from user profile, or 3) obtained as an output of another task, they are expressed as queries. Similarly, the value of a task’s output parameter may be: 1) sent to other tasks as input parameters and/or 2) sent to an end user.
IV. SERVICE ADAPTATION

If the invoked service changes the interface or protocol, then all the composite services invoking it will have to undergo analogous changes to interact with the new version of the invoked service. Taxonomy of mismatches that can occur between two services are Signature mismatch, Parameter constraint, ordering mismatch, Extra message, Message split. For each mismatch a template is provided in the AOP approach to adaptation.Template contains a set of <pointcut, advice> pairs that define where the adaptation logic is to be applied, and what this logic is. An example of template for the signature mismatch is presented in table 1.
V. ARCHITECTURE OF OUR APPROACH

Fig.1 provides architecture of our framework for adaptable web service composition. We propose DIstributed REgistries (DIRE) instead of single UDDI registry. It provides support for the cooperation among heterogeneous registries. It exploits a Service Publication Bus to connect a set of registries and allow them to share their services. The service builder, the service discovery engine, the proxy service, and the service deployer compose the service development and deployment environment, which provide a service composition environment where service designers and users can compose and invoke Web services. The runtime environment consists of a set of generic services (coordination, context, and event) that provide mechanisms for enacting the execution of composite Web services.

TABLE I
template for signature mismatch

	Signature Template

	Query
	Generic Adaptation Advice

	query (<inputType>)

executes before receive

when typebp = <inputType>
	Signaturepart1 (<Ti>) {
Receive msgOes ;

Assign msgObp .inParabp . typebp
(<Ti> (msgOes .inParaes .typees);
Reply msgObp; }

	query (<outputType>)

executes before reply
when typebp = <outputType>
	Signaturepart2 (<To>) {

Receive msgObp;

Assign msgOes .outParaes . typees
(<To> mgObp .outParabp .typebp);

Reply msgOes; }

A. Service Development/Deployment Environment
The service discovery engine facilitates the advertisement and location of services. Service registration, discovery, and invocation are implemented by SOAP calls. When a service registers with a discovery engine, a SOAP request containing the service description in WSDL is sent to the DIRE registry. After a service is registered in the DIRE registry, service designers and end users can locate the service by sending the SOAP request (e.g., business name, service type) to the DIRE registry. The service builder assists service designers in the creation and maintenance of composite services. It provides an editor for describing the statechart diagram of a composite service operation and for importing operations from existing services into composite services and communities. It should be noted that the service builder also supports the specification of process schemas.

The service deployer is responsible for generating Aspect templates and control tuples of every task of a composite service. Once the control tuples and templates are generated, the service deployer assists the service designer in the process of uploading these tuples into the tuple spaces of the corresponding component services and the composite service. Coordination services communicate asynchronously through the shared spaces by writing, reading, and taking control tuples.
DIRE (DIstributed REgistry) fosters the seamless

cooperation among heterogeneous registries since it does not require modifications to the publication and discovery processes adopted by the organizations behind the registries. DIRE exploits the publish/subscribe (P/S) paradigm. Special-purpose element, called dispatcher is used for both to subscribe and publish. DIRE exploits both content-based and subject-based subscriptions.
B. Runtime Environment
This layer contains the three core generic service that provides the execution semantics for the adaptive composite services. The coordination service provides an operation called coordinate for receiving messages, managing service instances (i.e., creating and deleting instances), registering events to the event service, triggering actions, tracing service invocations and communicating with other coordination services. The coordination service relies on tuple space of the associated service to manage service activities. The context service detects, collects, and disseminates context information while the event service fires and distributes events. Finally, the event service provides operations for receiving messages, including subscribing messages from the coordination service of a service and context information from the context service, and notifying the fired events to the coordination services.

.

Fig.1 Frame work for adaptable web service composition.
VI. Execution Model
Existing service provisioning systems are centralized and service orchestration is ensured by a single process which acts as a central scheduler. Centralized execution models suffer from permanent connectivity, availability and scalability problems [7]. Accordingly, to achieve adaptive and scalable execution of composite services in dynamic environments, the participating services should be self-managed: they should be capable of coordinating their actions in an autonomous way. This leads to Decentralized Orchestration of composite web services. In Decentralized Orchestration, data and control dependences between the components are analyzed and the code can be partitioned into smaller components that execute at distributed locations. We refer to this mode of execution as decentralized orchestration. There are multiple engines, each executing a composite web service specification at distributed locations. The engines communicate directly with each other to transfer data and control when an asynchronous manner. Performance benefits of Decentralized Orchestration are

· There is no centralized coordinator which can be a potential bottleneck.

· Distributing the data reduces network traffic and improves transfer time.
A. Orchestration Enabling
The model consists of three core services, namely the coordination service, the context service, and the event service. These three elements form orchestration enabling services. When executing a composite service, orchestration enabling services automatically schedule and execute the component services, and adapt to user configured exceptions and contexts. Each participating Web service is associated with a coordination service that monitors and controls the service execution. The coordination service determines when should a component service be executed, and what should be done after the execution is completed. The knowledge needed by a coordination service in order to answer these questions at

runtime is statically extracted from the description of the composite service (e.g., statecharts, user contexts), and placed in the corresponding tuple space. A coordination service enforces the control tuples with the help of an event service and a context service. The event service is responsible for disseminating events registered by the coordination service, and the context service is responsible for collecting context information from context providers.

VII. IMPLEMENTATION

In our implementation, we design an E-Learning service. We offer some courses. User has to register for a course. Once they have registered, their username and password will be stored. When the user accesses the service, first authentication of the user is performed. Then he is given the information about his subjects lecture time and place. The service that delivers lecture notes will take input from attendance remainder service. Lecture notes are provided to the user only during that particular lecture time. Lecture notes will be delivered in an adaptive way. By analyzing the time required by the users to view the pages and understand its contents, we find an average time. If the user views the page beyond the critical time limit, he is provided with a page that describes its contents in a simpler form (e.g. diagrams, flowcharts etc.). If the student has any doubts he can either post or vote his queries based on the questions already raised. All these implementations are made in java with Apache Tomcat6 as a Web server where Apache Axis is deployed. Apache Axis provides not only a server-side infrastructure for deploying and managing services, but a client-side API for invoking these services. Each service has a deployment descriptor that
includes the unique identifier of the Java class to be invoked, session scope of the class, and operations in the class available for the clients. Each service is deployed using the service management client by providing its descriptor and the URL of the Axis servlet rpcrouter.

Fig .2 class assistant process schema

VIII. CONCLUSION AND FUTURE WORK
The paper presented the framework for the deployment of adaptable Web service compositions. First, we introduced a adaptable service composition model. The innovative aspect of our model is to provide distinct abstractions for service context and exceptions, which can be embedded or plugged into the process schemas through simple interaction with end users. It comprises DIRE for the user-controlled replication of services onto distributed registries. We proposed the use of AOP for service adaptation to interface and protocol mismatches. The notion of template also promotes reusability of adaptation logic that occurs repetitively across different locations in an implementation of a service. In the future, we plan to extend the Development Environment to offer a semi-automated identification of mismatches and a graphical interface that allows the user to create queries over process specifications and navigate through the results

 REFERENCES

[1]
N. Milanovic and M. Malek, “Current Solutions for Web Service
Composition,” IEEE Internet Computing, vol. 8, no. 6,

pp. 51- 59 , Nov./Dec. 2004
 [2]
D. Ardagna and B. Pernici, “Adaptive Service Composition in

Flexible Processes,” IEEE Trans. Software Eng., vol. 33, no. 6,

 pp. 369-384, June 2007.
 [3]
L. Baresi, E. Di Nitto, C. Ghezzi, and S. Guinea, “A Framework for the Deployment of Adaptable Web Service Compositions,” Service Oriented Computing and Applications, vol. 1, no. 1, pp. 75-91, 2007.

 [4]
W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati, “An

Aspect-Oriented Framework for Service Adaptation,” Proc. Fourth Int’l Conf. Service-Oriented Computing (ICSOC ’06), Dec. 2006.
 [5]
Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. H. Ngu,“Configurable composition and adaptive provisioning of web services”, IEEE Services Computing, vol. 2, NO. 1, pp.34- 49, Mar. 2009.

 [6]
D. Berardi, G.D. Giacomo, and D. Calvanese, “Automatic

Composition of Process-Based Web Services: A Challenge,” Proc. 14th Int’l World Wide Web Conf. (WWW ’05), May 2005.
[7]
G.B. Chafle, S. Chandra, V. Mann, and M.G. Nanda, “Decentralied Orchestration of Composite Web Services,” Proc. 13th Int’l World Wide Web Conf. (WWW ’04), May 2004.

 [8]
Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and

Managing Web Services: Issues, Solutions, and Directions,” The

VLDB J., vol. 17, no. 3, pp. 537-572, 2008.

 [9]
M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: State of the Art and Research

Challenges,” Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.
[10]
B. Srivastava and J. Koehler, “Web Service Composition—Current Solutions and Open Problems, Proc. Int’l Conf. Automated Planning and Scheduling (ICAPS ’03), 2003.
 [11]
V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu,

S. Mittal, and B. Srivastava, “A Service Creation Environment Based on End to End Composition of Web Services,” Proc. 14th Int’l Conf. World Wide Web (WWW ’05), May 2005.
Service Builder

Proxy Service

Service Discovery Engine

Service Deployer

DIRE

Registry

Registry

Service Publication Bus

Registry

Registry

Tuple Space

Coordination service

Context

Context service

Event Service

Web Services

Composite Services

Development/

Deployment Environment

Run time Environment

Course registration

User login

Attendance remainder

Attendance guide

Lecture notes

Browse questions

Vote question

Post question

consultation

feedback

